Acta Cryst. (1998). C54, 694-695

Chlorotricyclohexylsilane, C₁₈H₃₃ClSi

BRITT E. LINDFORS, JONATHAN L. MALE, DAVID R. TYLER AND TIMOTHY J. R. WEAKLEY

Department of Chemistry, University of Oregon, Eugene, OR 97403, USA. E-mail: tweakley@oregon.uoregon.edu

(Received 20 October 1997; accepted 24 November 1997)

Abstract

The $(C_6H_{11})_3$ SiCl molecule in the title compound lies on a crystallographic mirror plane. Bond lengths include Si—Cl 2.087 (1), and Si—C 1.871 (3) and 1.875 (2) Å.

Comment

We are investigating the connection between the size of the alkyl group R and the efficiency of photolysis of molecules of the type (CpCH₂CH₂OSiR₃)₂Mo₂(CO)₆ (Cp = cyclopentadienyl), which are prepared from (CpCH₂CH₂OH)₂Mo₂(CO)₆ by successive reaction with *n*-BuLi and R_3 SiCl (Male *et al.*, 1997). The structure determination of the title reagent, $(c-Hx)_3$ SiCl (c-Hx =cyclohexyl), (I), was undertaken as part of its characterization.

The Cl and Si atoms lie on a crystallographic mirror plane which bisects one of the three chair-conformation c-Hx rings. The Si atom is sited equatorially with respect to each ring. The crystal is isomorphous (cell dimensions, space group and molecular packing) with $(c-Hx)_3$ CCl (Gillies et al., 1996) and $(c-Hx)_3$ SnX (X = Br, I; Calogero et al., 1981), and also with (c-Hx)₃GeSH (Brisse et al., 1983). As in these compounds [and also $(c-Hx)_3$ SnX (X = F, Cl; Calogero *et al.*, 1979, 1981)], the packing density is low (here, 22.9 Å³/non-H atom). The shortest intermolecular distance for non-H atoms is from C5 to C8 [3.831 (3) Å], while the nearest non-H atom to Cl is C10 at a distance of 4.043(5) Å, and the nearest Si atom to Cl is at a distance of 5.523(1) Å [contrast the non-isomorphous (c-Hx)₃SnCl (Calogero et al., 1979), with a 3.30 Å Sn · · · Cl contact]. The reduction in the Cl-Si-C bond angles compared with the C-Si-C angles is greater than in Ph₃SiCl (Lobkovskii et al., 1981), but is paralleled in the other $(c-Hx)_3MX$ molecules.

Fig. 1. The molecular structure of $(C_6H_{11})_3SiCl$ with 30% probability ellipsoids.

Experimental

Hexanes (75 ml) and cyclohexyl chloride (35 ml) were added to 6.14 g Li (from 25 g Li dispersion) under argon over a 5 h period with reflux. SiCl₄ (3.5 ml) in 10 ml hexane was then added over 2 h at 273 K. The mixture was kept at 296 K for 36 h, filtered, and treated dropwise at 273 K with 6 *M* HCl (60 ml), and the organic layer was dried over CaCl₂. The solvent was removed under vacuum, and the crude product was recrystallized from hexane. A colorless block cleaved from a larger crystal was glued to a glass fiber.

Crystal data

$C_{18}H_{33}ClSi$	Mo $K\alpha$ radiation
$M_r = 313.00$	$\lambda = 0.71073 \text{ Å}$
Orthorhombic	Cell parameters from 25
Pnma	reflections
a = 10.855(1) Å	$\theta = 14.0 - 16.0^{\circ}$
b = 16.045(2) Å	$\mu = 0.26 \text{ mm}^{-1}$
c = 10.516(2) Å	T = 295 K
V = 1831.5 (8) Å ³	Block
Z = 4	$0.36 \times 0.34 \times 0.31 \text{ mm}$
$D_x = 1.135 \text{ Mg m}^{-3}$	Colorless
D_m not measured	
Data collection	
Enraf–Nonius CAD-4	1275 reflections with
diffractometer	$I < \sigma(I)$
$\omega/2\theta$ scans	$\theta_{\rm max} = 25.0^{\circ}$
Absorption correction:	$h = 0 \rightarrow 12$
ψ scan (North <i>et al.</i> ,	$k = 0 \rightarrow 19$
1968)	$l = 0 \rightarrow 12$
$T_{\rm min} = 0.89, T_{\rm max} = 0.92$	3 standard reflections
1665 measured reflections	every 60 reflections
1665 independent reflections	intensity decay: 3.2%

Refinement	
Refinement on F^2	$\Delta \rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^{-3}$
R(F) = 0.043	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.073$	Extinction correction:
S = 1.47	$I_o(\text{corr}) = I_o[1 + 2gI_c]$
1665 reflections	(Stout & Jensen, 1968)
166 parameters	Extinction coefficient:
All H atoms refined	$g = 9.8 (13) \times 10^{-7}$
$w = 4F_o^2 / [\sigma^2(I) + (0.02I)^2]$	Scattering factors from
$(\Delta/\sigma)_{\rm max} = 0.001$	Cromer & Waber (1974)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$U_{\rm eq} = (1/3) \sum_i \sum_j U^{ij} a^i a^j \mathbf{a}_i . \mathbf{a}_j.$

	x	у	z	U_{eq}
Cl	0.66388 (7)	3/4	0.55486 (8)	0.0569 (3)
Si	0.47333 (7)	3/4	0.5282	0.0335 (2)
CI	0.4193 (2)	0.6496(1)	0.6002(2)	0.0369 (5)
C2	0.2867(2)	0.6262(2)	0.5669(2)	0.0497 (6)
C3	0.2552(3)	0.5382(2)	0.6117 (2)	0.0594 (8)
C4	0.2783 (3)	0.5278(2)	0.7525 (3)	0.0597 (7)
C5	0.4077 (3)	0.5523(1)	0.7886(2)	0.0539 (7)
C6	0.4380(2)	0.6403(1)	0.7435 (2)	0.0434 (6)
C7	0.4462 (3)	3/4	0.3525 (3)	0.0351 (7)
C8	0.4939 (3)	0.8281(1)	0.2851(2)	0.0478 (7)
C9	0.4643 (3)	0.8277 (2)	0.1437 (2)	0.0571 (7)
C10	0.5127 (4)	3/4	0.0800(3)	0.060(1)

Table 2. Selected geometric parameters (Å, °)

	-		
Cl—Si	2.087(1)	C3—C4	1.512(3)
Si—C1	1.875 (2)	C4—C5	1.508 (4)
Si—C7	1.871 (3)	C5—C6	1.525 (3)
C1—C2	1.528(3)	C7—C8	1.530(2)
C1-C6	1.528(3)	C8—C9	1.521 (3)
C2—C3	1.528(3)	C9—C10	1.509 (3)
Cl—Si—Cl	104.82 (7)	C3-C4-C5	111.9 (2)
CI—Si—C7	106.78 (9)	C4—C5—C6	111.3 (2)
C1—Si—C1 ⁱ	118.5(1)	C1-C6-C5	111.6 (2)
C1—Si—C7	110.47 (7)	Si—C7—C8	113.8 (1)
Si—C1—C2	114.4(1)	C8—C7—C8 ⁱ	110.0 (2)
Si-C1-C6	116.2(1)	C7—C8—C9	112.2 (2)
C2-C1-C6	109.1 (2)	C8-C9-C10	111.3 (2)
C1-C2-C3	111.6 (2)	C9-C10-C9'	111.4 (3)
C2—C3—C4	111.5 (2)		

Symmetry code: (i) $x, \frac{3}{2} - y, z$.

Data were corrected for both decay and absorption. All non-H atoms were apparent in an *E* map. Refinement was on F^2 ; all reflections were used, with net negative intensities set at zero. All H atoms were located and refined isotropically. Refined C—H bond lengths were in the range 0.92 (2)–1.02 (2) Å; values of $U_{iso}(H)$ were 0.035 (7)–0.074 (11) Å².

Data collection: CAD-4/PC (Enraf-Nonius, 1993). Cell refinement: CAD-4/PC. Data reduction: TEXSAN (Molecular Structure Corporation, 1989). Program(s) used to solve structure: TEXSAN. Program(s) used to refine structure: TEXSAN. Software used to prepare material for publication: TEXSAN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1098). Services for accessing these data are described at the back of the journal.

References

Brisse, F., Bélanger-Gariépy, F., Zacharie, B., Gareau, Y. & Steliou, K. (1983). Nouv. J. Chim. 7, 391-394.

- Calogero, S., Ganis, P., Peruzzo, V. & Tagliavini, G. (1979). J. Organomet. Chem. 179, 145-152.
- Calogero, S., Ganis, P., Peruzzo, V., Tagliavini, G. & Valle, G. (1981). J. Organomet. Chem. 220, 11-20.
- Cromer, D. T. & Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 71, 148. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- Enraf-Nonius (1993). CAD-4/PC Diffractometer Software. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
- Gillies, D. G., Luff, S., Smith, G. W. & Sutcliffe, L. H. (1996). J. Chem. Cryst. 26, 539-542.
- Lobkovskii, E. B., Fokin, V. N. & Semenenko, K. N. (1981). Zh. Strukt. Khim. 22, 152-155.
- Male, J. L., Lindfors, B. E., Covert, K. J. & Tyler, D. R. (1997). *Macromolecules*, **30**, 6404–6406.
- Molecular Structure Corporation (1989). TEXSAN. TEXRAY Structure Analysis Software. Version 5.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Stout, G. H. & Jensen, L. H. (1968). X-ray Structure Determination: A Practical Guide, p. 411. London: Macmillan.

Acta Cryst. (1998). C54, 695-697

(*E*)-1-(3-Methoxy-4-nitrophenyl)-2-(3,4,5trimethoxyphenyl)ethene

DONALD F. MULLICA, KEVIN G. PINNEY, PILAR MEJIA, BRENT E. ROSENQUIST AND ERIC L. SAPPENFIELD

Department of Chemistry, PO Box 97348, Baylor University, Waco, Texas 76798-7348, USA. E-mail: donald_mullica@baylor.edu

(Received 2 June 1997; accepted 19 December 1997)

Abstract

The design and synthesis of new photoaffinity labeling (PAL) reagents is important in order to obtain detailed binding-site and structural information about tubulin. (*E*)-1-(3-Methoxy-4-nitrophenyl)-2-(3,4,5-trimethoxyphenyl)ethene, $C_{18}H_{19}NO_6$, crystallizes in the centrosymmetric space group $P2_1/n$ (No. 14), with four molecules in the unit cell. The *trans*-stilbene base component is nearly planar (mean deviation 0.05 Å), with a dihedral angle between the two phenyl rings of 6.1°. Important bond distances include C=C 1.326 (3) Å and mean N-O 1.187 (8) Å.

Comment

The design and synthesis of new photoaffinity labeling (PAL) reagents for tubulin is important in order to obtain detailed binding-site and structural information about this protein (Nare *et al.*, 1996; Sawada *et al.*, 1993; Rao *et al.*, 1992; Olszewski *et al.*, 1994). We have